
Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Version Control Systems
An Introduction

J.R. Mauro
jrm8005@cs.rit.edu

www.cs.rit.edu/~jrm8005

Department of Computer Science
Rochester Institute of Technology

November 19, 2008

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Agenda

1 Introduction

2 Digging Deeper

3 Distributed SCM

4 An Introduction to Git

5 Concluding Remarks

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Basic Questions

VCS? SCM? What are we talking about? What does it all
mean?

VCS stands for Version Control System, though this isn’t really
what we’re going to talk about
SCM stands for either “Software Configuration Management”,
or “Source Code Management”, or “Software Change
Management”, or or. . .
A system for managing multiple revisions of related source
code files that comprise a single module or project, linearly
and/or concurrently, which offers tools and strategies for
managing differences between versions, concurrent
development by multiple people, “branches”, etc.

What is the Difference between SCM and Revision/Version
Control?

Revision control is strictly linear
Revision control has no capabilities for multiple developers

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Basic Questions

VCS? SCM? What are we talking about? What does it all
mean?

VCS stands for Version Control System, though this isn’t really
what we’re going to talk about
SCM stands for either “Software Configuration Management”,
or “Source Code Management”, or “Software Change
Management”, or or. . .

A system for managing multiple revisions of related source
code files that comprise a single module or project, linearly
and/or concurrently, which offers tools and strategies for
managing differences between versions, concurrent
development by multiple people, “branches”, etc.

What is the Difference between SCM and Revision/Version
Control?

Revision control is strictly linear
Revision control has no capabilities for multiple developers

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Basic Questions

VCS? SCM? What are we talking about? What does it all
mean?

VCS stands for Version Control System, though this isn’t really
what we’re going to talk about
SCM stands for either “Software Configuration Management”,
or “Source Code Management”, or “Software Change
Management”, or or. . .
A system for managing multiple revisions of related source
code files that comprise a single module or project, linearly
and/or concurrently, which offers tools and strategies for
managing differences between versions, concurrent
development by multiple people, “branches”, etc.

What is the Difference between SCM and Revision/Version
Control?

Revision control is strictly linear
Revision control has no capabilities for multiple developers

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Basic Questions

VCS? SCM? What are we talking about? What does it all
mean?

VCS stands for Version Control System, though this isn’t really
what we’re going to talk about
SCM stands for either “Software Configuration Management”,
or “Source Code Management”, or “Software Change
Management”, or or. . .
A system for managing multiple revisions of related source
code files that comprise a single module or project, linearly
and/or concurrently, which offers tools and strategies for
managing differences between versions, concurrent
development by multiple people, “branches”, etc.

What is the Difference between SCM and Revision/Version
Control?

Revision control is strictly linear
Revision control has no capabilities for multiple developers

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Basic Questions

VCS? SCM? What are we talking about? What does it all
mean?

VCS stands for Version Control System, though this isn’t really
what we’re going to talk about
SCM stands for either “Software Configuration Management”,
or “Source Code Management”, or “Software Change
Management”, or or. . .
A system for managing multiple revisions of related source
code files that comprise a single module or project, linearly
and/or concurrently, which offers tools and strategies for
managing differences between versions, concurrent
development by multiple people, “branches”, etc.

What is the Difference between SCM and Revision/Version
Control?

Revision control is strictly linear
Revision control has no capabilities for multiple developers

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Why It’s Needed

SCM is something you need whether you’re a programmer
alone or on a team

SCM is something you need whether you’re a programmer or
not!

Why is Source Code Management important?

Safety and protection, from yourself, your tools, and others
“Sandboxing” new idea
Finding regressions
Long-term storage
Multiple people working at once

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Why It’s Needed

SCM is something you need whether you’re a programmer
alone or on a team

SCM is something you need whether you’re a programmer or
not!

Why is Source Code Management important?

Safety and protection, from yourself, your tools, and others
“Sandboxing” new idea
Finding regressions
Long-term storage
Multiple people working at once

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Why It’s Needed

SCM is something you need whether you’re a programmer
alone or on a team

SCM is something you need whether you’re a programmer or
not!

Why is Source Code Management important?

Safety and protection, from yourself, your tools, and others
“Sandboxing” new idea
Finding regressions
Long-term storage
Multiple people working at once

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Why It’s Needed

SCM is something you need whether you’re a programmer
alone or on a team

SCM is something you need whether you’re a programmer or
not!

Why is Source Code Management important?

Safety and protection, from yourself, your tools, and others
“Sandboxing” new idea
Finding regressions
Long-term storage
Multiple people working at once

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Ok, Tell Me More

There are two main kinds of SCM

Centralized and Distributed
Centralized came first
Distributed is widely being recognized as the “Right Thing”
Despite its recent popularity, distributed has not displaced
centralized, especially in corporate environments and in
projects with extensive history or little concurrent development

Literally dozens of solutions commercial and free

Various languages and platforms, C, C++, Python, even
Haskell!

Different ideas of concurrency and strategies for conflict
resolution

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Ok, Tell Me More

There are two main kinds of SCM

Centralized and Distributed
Centralized came first
Distributed is widely being recognized as the “Right Thing”
Despite its recent popularity, distributed has not displaced
centralized, especially in corporate environments and in
projects with extensive history or little concurrent development

Literally dozens of solutions commercial and free

Various languages and platforms, C, C++, Python, even
Haskell!

Different ideas of concurrency and strategies for conflict
resolution

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Phraseology

repository All the data files needed for the SCM to represent a
project and function on it

commit, changeset A single unit of work submitted to a repository

submit, commit (v) To send one’s changes to a repository

checkout The act of obtaining a copy from a repository

branch A copy of the codebase used for implementing new
features or maintaining old releases.

master, trunk The main branch of a project

merge The process of combining two branches, done by the
SCM software occasionally with human help

parent The immediately previous commit. Also, the branch
from which the branch in question was created.

working copy A checkout from a repository, the workspace in
which a programmer makes changes

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

The Process

Developers make their changes to the codebase,
“committing” every now and then to the repository

The SCM software handles these additions, creating
changesets and storing them in a space-efficient manner
relative to older versions

This essentially introduces another step, one in which the
developer stops coding, and takes time to submit, giving their
changeset a description

The setup of an SCMs repository can be complex, especially
with the commonly-used “classic” tools like CVS and SVN

This concept introduces quite a bit of overhead, but it will be
shown to be worth it

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

SCM Timeline

1972 SCCS, originally released for the IBM System/370
computer, is ported to UNIX

1980s RCS released, becomes part of the GNU project

June, 1986 Dick Grune releases CVS, a tool he developed to ease
working with students on the Amsterdam Compiler
Kit. CVS introduces branching

2000 CollabNet tries to address CVS’s shortcomings with
the release of Subversion

2002 Linux kernel adopts BitKeeper for revision control

2005 Git and Mercurial appear, interest in distributed
SCMs skyrockets

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Typical Centralized “Code Flow”

Central RepositoryAlice Bob

Carol

Dave

Eve

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Workflow in Traditional SCMs

Developers initialize repository, grant commit access

Initial files created, bugtracker set up, etc.

Developers begin coding

In theory, they commit small, logically coherent changes which
at any point result in a stable system that builds and runs
In practice, developers are very bad at this

Merge conflicts are dealt with when necessary. There may be
a “Merge Guy”

At some point, the source is frozen for release. A
“maintenance branch” is set up while development continues
on master

And this has more or less worked for 20 years. . .

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Centralized is Bad

One point of failure

Too many jobs are done on the server

No offline committing

No built-in backup strategy

No easy restore

No content verification

Notion of “commit access”

Lack of future-proof concurrency designs from the 80’s and
early 90’s

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Git is Born

In the early 2000s, the Linux kernel decides to use Bitkeeper,
a proprietary SCM

There’s tension over this because it’s not free software, but BK
was the only distributed SCM

In 2005, various issues prevented the Linux Kernel developers
from using BK, prompting Torvalds set out to find a good
replacement

Torvalds’s investigations find that the good alternatives all
had one problem: they were too slow

Not one to be put off easily, Torvalds prototypes a “log Linus’
state” kind of user-space filesystem, which allows him to do
merges more quickly

Development gathers, improving it into a sort of version
control framework around which a usable SCM workflow could
develop

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Distributed is Good

Contrasted with the pitfalls of centralized tools:

No single point of failure

Backups with distributed SCMs are simple: every single
checkout is a working backup with the entire project history

Many things, like diffs, are done locally. Only pushing/pulling
puts strain on a non-local computer

Restore is simple, as a client checkout has everything needed
to act as a repository

Content is verified with SHA1 hashes of file contents

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Distributed is Good, continued

No such thing as commit access. Everyone is free to clone and
develop.

Offline commits supported

Concurrency is key to distribution, so it is well supported

Commits are atomic, merging is easy, and better tools exist to
help.

Scalability and performance are better

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Typical Distributed “Code Flow”

QA

Team 4

Team 1

Team 2

Team 3

Release

Next Version Here

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Distributed SCM Workflow

Developers initialize repository. No need for commit access

Initial files created, bugtracker set up, etc.

Developers clone repository, possibly creating several “topic
branches”, begin coding

Developers can adopt any style they want, as there are many
tools to amend commits.
Hopefully they approach the ideal commit strategy with the
help of the tools

Every developer merges, since they have their own branches
which aren’t controlled (or even seen, most of the time) by
others.

At some point, the source is frozen for release. A
“maintenance branch” is set up while development continues
on master

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Key Git Concepts

The Index A staging ground for the next commit

Interactive commits Before publishing their work, developers are
free to reorder their commits, move their changes
from one commit to another, and squash several
commits into one.

Rebasing Developers can make a series of commits interleaved
with upstream commits appear to happen linearly at
the end of the latest upstream changeset

Topic Branches Anyone can create as many branches as they
want, so often developers have a branch for every
sub-project they work on.

This awesome power has led to Git being described as a set of
tools for “creating your own distributed SCM workflow”

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Setting Up A Repo

1 Create a directory with your initial files

2 Run git init, followed by git add . and git commit

3 Configure network access with git daemon and git instaweb

4 Alternatively, get free git hosting on Github, git.or.cz, or
Gitorious

5 Start coding!

If you’re not starting your own project, you can run git clone
〈repo〉 to pull someone’s code and start working

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Day-to-Day Git

Run git pull to receive changes from your parent and peer
repositories

Edit code, compile, test. . .

Run git add on the files you’ve altered whose changes you
want to appear in the next commit

If you want CVS/SVN/P4 behavior, run git commit -a

Create a branch for your new idea with git branch 〈name〉
Checkout your maintenance branch to fix a bug with git
checkout -b 〈branch1〉
See what you did with git diff or git status

Reorder all of your changes with git rebase

Merge your fixes into your master branch with git merge
〈branch1〉 〈branch2〉

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Day-to-Day Git

Run git pull to receive changes from your parent and peer
repositories

Edit code, compile, test. . .

Run git add on the files you’ve altered whose changes you
want to appear in the next commit

If you want CVS/SVN/P4 behavior, run git commit -a

Create a branch for your new idea with git branch 〈name〉
Checkout your maintenance branch to fix a bug with git
checkout -b 〈branch1〉
See what you did with git diff or git status

Reorder all of your changes with git rebase

Merge your fixes into your master branch with git merge
〈branch1〉 〈branch2〉

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Day-to-Day Git

Run git pull to receive changes from your parent and peer
repositories

Edit code, compile, test. . .

Run git add on the files you’ve altered whose changes you
want to appear in the next commit

If you want CVS/SVN/P4 behavior, run git commit -a

Create a branch for your new idea with git branch 〈name〉
Checkout your maintenance branch to fix a bug with git
checkout -b 〈branch1〉
See what you did with git diff or git status

Reorder all of your changes with git rebase

Merge your fixes into your master branch with git merge
〈branch1〉 〈branch2〉

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Working with Others

Use git pull and git push to share changes

Check your mail for patches, apply them with git apply for a
diff or git am to take them directly from an mbox

Git will automerge for you, but it may need help. Use git
mergetool to do this pleasantly

Use git log to see what’s happened and git blame to see line
for line who changed file content

git cherrypick can be useful to pull one select change from
another branch

Use git format-patch to send your changes out as patchsets,
or use git push to send them to a repository

Tag and PGP sign a release with git tag, and format a source
code tarball or zip with git archive

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Potpourri

Add hooks to trigger before/after many events by placing
them in .git/hooks

Look on the web for user-contributed scripts like git forest and
git split

Import entire histories from competitors like CVS, SVN, P4,
BZR, more!

You can even interact bidirectionally with any of these and no
one will be the wiser

Screw up a commit message or forget to add a file? Run git
commit –amend

Run git commit –interactive to select pieces of code to put
into the index

Completely change the course of your commit history with git
rebase -i 〈ref 〉

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Recap: Why DVCS over CVCS?

Distribution offers:

No single point of failure

Easy branching and merging

Easy collaboration with others

Less administrative overhead

Verification of content

Easy backups

High performance

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Why Git instead of $SCM?

Some features Git offers that its competitors may not:

The index

Most allowable workflows

Unparalleled speed (written in pure Linus-y C)

Collection of small tools that can be scripted

Possibly the best rebase support

Best repository size after packing

Fanboy Factor: Only SCM written by the Great Linus

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Views

Interest in distributed SCMs has exploded

Because of high quality of merging and fault tolerance, the
distributed model is increasingly being considered the best
way to handle development

Community projects benefit greatly as anyone can easily
contribute without having to deal with user accounts

The ease of distributed SCM merges encourages branches,
which helps improve process, leading to higher quality code

Many projects, including Mozilla, X.org, Wine, MoinMoin,
Java, Open Solaris, and most recently Qt use DVCS, with
many others considering or in the process of transitioning
their SCM

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Questions?

About:
This presentation was made with LATEX Beamer using the Frankfurt
theme.

It was presented with Accentuate, a free slideshow program maintained

by the author. See www.cs.rit.edu/~jrm8005/accentuate.html for

more information.

J.R. Mauro Version Control Systems

Introduction Digging Deeper Distributed SCM An Introduction to Git Concluding Remarks

Questions?

About:
This presentation was made with LATEX Beamer using the Frankfurt
theme.

It was presented with Accentuate, a free slideshow program maintained

by the author. See www.cs.rit.edu/~jrm8005/accentuate.html for

more information.

J.R. Mauro Version Control Systems

	Introduction
	
	
	
	
	

	Digging Deeper
	
	
	
	
	

	Distributed SCM
	
	
	
	

	An Introduction to Git
	
	
	
	
	

	Concluding Remarks
	
	
	

	

